## Single-Trial Adaptive Decoding of Concatenated Codes

Vladimir R. Sidorenko, Christian Senger, Martin Bossert (TAIT, Ulm University)<br>Victor V. Zyablov (IITP, Russian Academy of Sciences)

11th International Workshop on Algebraic and Combinatorial Coding Theory, 16.06.-22.06.2008, Pamporovo, Bulgaria

## Motivation/History

- Since their invention by Forney in 1966, serially concatenated codes are frequently used in applications.
- Reason: Easily decodable component codes might be chosen resulting in low overall decoding complexity.
- However, decoding up to half the minimum concatenated code distance is non-trivial. Multiple decoding trials are required.
- Several approaches to optimize single-trial decoding by [Zyablov, 1973], [Kovalev, 1986], (some refinements in [Weber and Abdel-Ghaffar, 2003]), [Sorger, 1993] and [Kötter, 1993].
- All previous approaches assume outer BMD decoding


## Motivation/History

- Since their invention by Forney in 1966, serially concatenated codes are frequently used in applications.
- Reason: Easily decodable component codes might be chosen resulting in low overall decoding complexity.
- However, decoding up to half the minimum concatenated code distance is non-trivial. Multiple decoding trials are required.
- Several approaches to optimize single-trial decoding by [Zyablov, 1973], [Kovalev, 1986], (some refinements in [Weber and Abdel-Ghaffar, 2003]), [Sorger, 1993] and [Kötter, 1993].
- All previous approaches assume outer BMD decoding - we derive a single-trial algorithm for outer BD decoding!


## Encoding of Concatenated Codes

Codeword of outer code
$\mathcal{C}^{\circ}\left(\mathbb{F}_{p^{m}} ; n^{\mathrm{o}}, k^{\mathrm{o}}, d^{\mathrm{o}}\right)$

$$
\mathbf{c}^{\mathrm{o}} \in \mathcal{C}^{\circ}
$$

## Encoding of Concatenated Codes

Codeword of outer code $\mathcal{C}^{\circ}\left(\mathbb{F}_{p^{m}} ; n^{\mathrm{o}}, k^{\mathrm{o}}, d^{\mathrm{o}}\right)$

Map symbols from $\mathbb{F}_{p^{m}}$ to column vectors from $\mathbb{F}_{p}^{m}$

$$
\mathbf{c}^{\mathrm{o}} \in \mathcal{C}^{\circ}
$$



## Encoding of Concatenated Codes

Codeword of outer code $\mathcal{C}^{\circ}\left(\mathbb{F}_{p^{m}} ; n^{\circ}, k^{\circ}, d^{\circ}\right)$

Map symbols from $\mathbb{F}_{p^{m}}$ to column vectors from $\mathbb{F}_{p}^{m}$


$$
{ }_{\nabla} \operatorname{enc}_{\mathcal{C}^{\mathrm{i}}}\left(\mathbf{u}_{j}^{\mathrm{i}}\right)
$$

$\nabla$


## Encoding of Concatenated Codes

Codeword of outer code $\mathcal{C}^{\circ}\left(\mathbb{F}_{p^{m}} ; n^{\circ}, k^{\circ}, d^{\circ}\right)$

Map symbols from $\mathbb{F}_{p^{m}}$ to column vectors from $\mathbb{F}_{p}^{m}$


$$
{ }_{\nabla}^{\nabla} \operatorname{enc}_{\mathcal{C}^{\mathrm{i}}}\left(\mathbf{u}_{j}^{\mathrm{i}}\right)
$$

$\nabla$


Result of this procedure: $n^{\mathrm{i}} \times n^{0}$ matrix $C$ over $\mathbb{F}_{p}$

$$
\Longrightarrow C \in \mathcal{C}\left(\mathbb{F}_{p} ; \quad n=n^{\circ} n^{\mathrm{i}}, \quad k=m k^{\mathrm{o}}, \quad d=d^{\circ} d^{\mathrm{i}}\right)
$$

## Classical Decoding of Concatenated Codes

Received word $\boldsymbol{R}=\boldsymbol{C}+\boldsymbol{E}$


## Classical Decoding of Concatenated Codes

Received word $\boldsymbol{R}=\boldsymbol{C}+\boldsymbol{E}$


## Classical Decoding of Concatenated Codes

Received word $\boldsymbol{R}=\boldsymbol{C}+\boldsymbol{E}$


## Classical Decoding of Concatenated Codes

Received word $\boldsymbol{R}=\boldsymbol{C}+\boldsymbol{E}$


## Classical Decoding of Concatenated Codes

Received word $\boldsymbol{R}=\boldsymbol{C}+\boldsymbol{E}$

$\nabla \operatorname{dec}_{\mathcal{C}^{\circ}}\left(\mathbf{r}^{\mathrm{o}}\right)$
$\nabla$
$\tilde{\mathbf{c}}^{\mathrm{o}} \in \mathcal{C}^{\circ}$

## Classical Decoding of Concatenated Codes

Received word $\boldsymbol{R}=\boldsymbol{C}+\boldsymbol{E}$

$\nabla \operatorname{dec}_{\mathcal{C}^{\circ}}\left(\mathbf{r}^{\mathrm{o}}\right)$


Decoding result

## Decoding Radius of Classical Decoding

Classical decoding as described above guarantees to decode

$$
e<\frac{d^{\mathrm{o}} d^{\mathrm{i}}}{4}
$$

channel errors [Forney, 1966].

## Multi-Trial Error/Erasure Decoding of Conc. Codes

- Input for the outer decoder is $\mathbf{r}^{\mathrm{o}}=\left(r_{1}^{\mathrm{o}}, \ldots, r_{n^{\mathrm{o}}}^{\mathrm{o}}\right)$.
- For each symbol $r_{j}^{0}$ inner decoding implicitly yields the unreliability measure $\Delta_{j}:=\mathrm{d}_{\mathrm{H}}\left(\mathrm{r}_{j}^{\mathrm{i}}, \tilde{\mathbf{c}}_{j}^{\mathrm{i}}\right)$. W.I.o.g. $\Delta_{j} \geq \Delta_{j+1}$.
- Decoding in $d^{\circ} / 2$ trials with increasing number of erased $(\mathrm{x})$ most unreliable received symbols:

: etc.
- Result: List of at most $d^{\circ} / 2$ codeword candidates.
- Selection among the list possible by known criterion.


## Decoding Radius of Multi-Trial Decoding

- Multi-trial error/erasure decoding as described above guarantees to decode

$$
e<\frac{d^{\mathrm{o}} d^{\mathrm{i}}}{2}
$$

channel errors.

- In literature, procedure is called Generalized Minimum Distance (GMD) decoding [Forney, 1966].


## Single-Trial Approaches

- [Zyablov, 1973] proposes single-trial decoding by fixing a static threshold $T$ for erasing received symbols, i.e. $r_{j}^{\mathrm{o}}$ is erased if $\Delta_{j}>T$. The decoding radius is

$$
e<\frac{d^{\mathrm{o}} d^{\mathrm{i}}}{3}
$$

Threshold $T$ is chosen independently of $\boldsymbol{\Delta}$.

- [Kovalev, 1986] takes the unreliabilities $\boldsymbol{\Delta}$ into consideration (adaptive decoding). Bounds for the decoding radius give

$$
e<\rho \approx \frac{3 d^{\mathrm{o}} d^{\mathrm{i}}}{8}
$$

- Aforementionend approaches assume outer BMD decoding. Our task: Derive an adaptive single-trial decoder assuming outer BD decoding!


## Derivation of a Single-Trial Adaptive Decoder

- Assume an outer BD decoder with error/erasure tradeoff parameter $1<\lambda \leq 2$. Outer decoding fails if

$$
\lambda \varepsilon+\tau>d^{\mathrm{o}}-1
$$

- For given number $\tau$ of erasures (x), outer decoding fails if

$$
\varepsilon(\tau) \geq\left\lfloor\frac{d^{0}-\tau-1}{\lambda}\right\rfloor+1
$$

- For given unreliabilities $\Delta:=\left(\Delta_{1}, \ldots, \Delta_{n^{\circ}}\right), \Delta_{j} \geq \Delta_{j+1}$, the minimum number of channel errors to obtain $\varepsilon(\tau)$ errors is

$$
\begin{aligned}
e_{\tau}(\boldsymbol{\Delta}) & :=\sum_{j=1}^{\tau} \Delta_{j}+\sum_{j=\tau+1}^{\tau+\varepsilon(\tau)}\left(d^{\mathrm{i}}-\Delta_{j}\right)+\sum_{j=\tau+\varepsilon(\tau)+1}^{n^{\circ}} \Delta_{j} \\
& =\sum_{j=1}^{n^{\circ}} \Delta_{j}+\sum_{j=\tau+1}^{\tau-\varepsilon(\tau)}\left(d^{\mathrm{i}}-2 \Delta_{j}\right) .
\end{aligned}
$$

## Single-Trial Outer Error/Erasure Decoding

Input. Received vector $\mathbf{r}^{\mathbf{o}}$, ordered unreliabilities $\boldsymbol{\Delta}$ from inner decoder. $d^{i}, d^{\circ}$ and parameter $1<\lambda \leq 2$.
Step 1. Find $\tau^{*}=\underset{\tau \in\left\{0, \ldots, d^{\circ}-1\right\}}{\arg \max } \sum_{j=\tau+1}^{\tau+\varepsilon(\tau)}\left(d^{\mathrm{i}}-2 \Delta_{j}\right)$.
Step 2. Decode $\mathbf{r}^{\circ}$ with erased most unreliable (first) $\tau^{*}$ positions by error/erasure decoder for $\mathcal{C}^{\circ}$ with error/erasure tradeoff parameter $\lambda$.
Output. Either a codeword of $\mathcal{C}^{\circ}$ or decoding failure.

## Decoding Radius of Single-Trial Decoder

- General decoding radius of the single-trial decoder by assuming the "worst" unreliability vector $\boldsymbol{\Delta}$ and choosing the "best" number of erasures $\tau$, i.e.

$$
\rho(\lambda):=\min _{\boldsymbol{\Delta}} \max _{\tau} e_{\tau}(\boldsymbol{\Delta}) .
$$

- Next step: Derive bounds on $\rho(\lambda)$ !


## Simplified Formula for the General Decoding Radius

- Transform unreliabilities $\boldsymbol{\Delta}$ into normalized reliabilities $\boldsymbol{h}$ by $h_{j}:=\left(d^{\mathrm{i}}-2 \Delta_{j}\right) / d^{\mathrm{i}}$. It holds: $0 \leq h_{1} \leq \cdots \leq h_{n^{\circ}} \leq 1$.
- Decoding radius for fixed $\boldsymbol{h}$ and $\tau$ :

$$
e_{\tau}(\boldsymbol{h}):=d^{\mathrm{i}}\left(\frac{1}{2} \sum_{j=1}^{n^{\circ}}\left(1-h_{j}\right)+\sum_{j=\tau+1}^{\tau+\varepsilon(\tau)} h_{j}\right) .
$$

- General decoding radius:

$$
\rho(\lambda)=\min _{\boldsymbol{h}} \max _{\tau} e_{\tau}(\boldsymbol{h}) .
$$

- Observe that selection of $\tau$ does not depend on $h_{d^{\circ}+1}, \ldots, h_{n^{\circ}}$. Simplification:

$$
\rho(\lambda)=d^{\mathrm{i}}\left(\frac{d^{\mathrm{o}}}{2}-\max _{\boldsymbol{h}} \min _{\tau}\left(\frac{1}{2} \sum_{j=1}^{d^{\mathrm{o}}} h_{j}-\sum_{j=\tau+1}^{\tau+\varepsilon(\tau)} h_{j}\right)\right)
$$

## Bounds for the Error Correcting Radius (1)

## Theorem (Lower Bound)

$$
\rho(\lambda) \geq \underline{\rho}(\lambda):=\frac{d^{\mathrm{i}}}{2}\left(\left\lfloor\frac{d^{\mathrm{o}}-1}{\lambda}\right\rfloor+\left\lfloor\frac{d^{\mathrm{o}}-\left\lfloor\frac{d^{\mathrm{o}}-1}{\lambda}\right\rfloor-2}{\lambda}\right\rfloor+2\right)
$$

Proof (Sketch): For any minimization we have

$$
\min _{s \in \mathcal{S}} f(s) \leq \min _{s \in \mathcal{S}^{\prime} \subseteq \mathcal{S}^{\prime}} f(s) \leq \frac{1}{\left|\mathcal{S}^{\prime}\right|} \sum_{s \in \mathcal{S}^{\prime}} f(s) .
$$

From this we get

$$
\min _{\tau}\left(\frac{1}{2} \sum_{j=1}^{d^{\circ}} h_{j}-\sum_{j=\tau+1}^{\tau+\varepsilon(\tau)} h_{j}\right) \leq \frac{1}{2} \sum_{j=\varepsilon(0)+\varepsilon(\varepsilon(0))+1}^{d^{\circ}} h_{j}
$$

## Bounds for the Error Correcting Radius (2)

Maximizing this term over $\boldsymbol{h}$ by setting all involved $h_{j}$ to 1 gives

$$
\max _{\boldsymbol{h}}\left(\frac{1}{2} \sum_{j=\varepsilon(0)+\varepsilon(\varepsilon(0))+1}^{d^{\mathrm{o}}} h_{j}\right) \leq \frac{1}{2}\left(d^{\mathrm{o}}-\varepsilon(0)-\varepsilon(\varepsilon(0))\right)
$$

Theorem (Upper Bound)

$$
\rho(\lambda) \leq \bar{\rho}(\lambda):=\frac{d^{\mathrm{i}}}{\lambda}\left(d^{\mathrm{o}}-1-\frac{1}{2}\left\lfloor\frac{d^{\mathrm{o}}-1}{\lambda}\right\rfloor\right)
$$

## Decoding Radius Deduced from the Bounds

- From the bounds we can deduce the decoding radius

$$
e<\rho(\lambda) \approx \frac{d^{\mathrm{o}} d^{\mathrm{i}}}{2}\left(1-\left(\frac{\lambda-1}{\lambda}\right)^{2}\right)
$$

- For $\lambda=2$, i.e. outer BMD decoding, our results coincide with [Kovalev, 1986], i.e. $\rho(2) \approx \frac{3 d^{\circ} d^{i}}{8}$.
- In [Schmidt et al., 2006] a BD decoder with parameter $\lambda=\frac{\ell+1}{\ell}$ for Interleaved Reed-Solomon (IRS) codes $^{1}$ is presented, where $\ell$ is the number of interleaved codes.
- Expressed in terms of $\ell$ the decoding radius is

$$
e<\rho(\ell) \approx \frac{d^{\mathrm{o}} d^{\mathrm{i}}}{2}\left(1-\left(\frac{1}{(1+\ell)^{2}}\right)\right) .
$$

[^0]
## Conclusions/Outlook

- Derived single-trial adaptive algorithm for decoding concatenated codes.
- Provided tight bounds for its decoding radius.
- For outer BMD decoding $(\lambda=2)$, decoding radius coincides with [Kovalev, 1986], i.e. $e<\rho(2) \approx \frac{3 d^{\circ} d^{i}}{8}$.
- For outer BD decoding, the decoding radius quickly approaches $\frac{d^{\circ} d^{i}}{2}$ for decreasing error/erasure tradeoff parameter $\lambda$.
- In special case of outer IRS codes, the radius approaches $\frac{d^{\circ} d^{i}}{2}$ quadratically with number $\ell$ of interleaved codes.
- Next step: Error exponent analysis, investigate influence of outer BD decoder's error probability.


## Upper Bound for the Error Correcting Radius (1)

Theorem (Upper Bound)

$$
\rho(\lambda) \leq \bar{\rho}(\lambda):=\frac{d^{\mathrm{i}}}{\lambda}\left(d^{\mathrm{o}}-1-\frac{1}{2}\left\lfloor\frac{d^{\mathrm{o}}-1}{\lambda}\right\rfloor\right)
$$

Proof (Sketch): Derive a lower bound on

$$
\max _{\boldsymbol{h}} \min _{\tau}\left(\frac{1}{2} \sum_{j=1}^{d^{\circ}} h_{j}-\sum_{j=\tau+1}^{\tau+\varepsilon(\tau)} h_{j}\right)
$$

this means to maximize the second sum $\sum_{j=\tau+1}^{\tau+\varepsilon(\tau)} h_{j}$.

## Upper Bound for the Error Correcting Radius (2)



Consider example on the left, $\lambda=3 / 2, d^{\circ}=13, \varepsilon(0)=9$.

Choose $\boldsymbol{h}$ s. t. $\sum_{j=\tau+1}^{\tau+\varepsilon(\tau)} h_{j}$ is constant for all decisive $\tau$.
$h_{j}= \begin{cases}\frac{\lambda-1}{\lambda} & j=1, \ldots, \varepsilon(0) \\ 1^{1} & j=\varepsilon(0)+1, \ldots, d^{\mathrm{o}}\end{cases}$

Then: $\sum_{j=\tau+1}^{\tau+\varepsilon(\tau)} h_{j}=\varepsilon(0)-\frac{\varepsilon(0)}{\lambda}$.
Inserting proves the Theorem.

## Tightness of the Bounds

## Corollary (Conformity of the Bounds)

If

$$
\lambda=\frac{\ell+1}{\ell}, \ell \in \mathbb{N} \backslash\{0\}
$$

and

$$
d^{\mathrm{o}}=s(\ell+1)^{2}+\ell+2, s \in \mathbb{N}
$$

then

$$
\underline{\rho}(\lambda)=\rho(\lambda)=\bar{\rho}(\lambda) .
$$

## Bibliography

[Forney, 1966] Forney, G. D. (1966).
Concatenated Codes.
M.I.T. Press, Cambridge, MA, USA.
[Kötter, 1993] Kötter, R. (1993).
Fast generalized minimum-distance decoding of Algebraic-Geometry and Reed-Solomon codes.
IEEE Trans. Inform. Theory, IT-42(3):721-737.
[Kovalev, 1986] Kovalev, S. I. (1986).
Two classes of minimum generalized distance decoding algorithms.
Problems of Information Transmission, 22(3):186-192.
Translated from Russian, original in Problemy Peredachi Informatsii, pp. 35-42.
[Schmidt et al., 2006] Schmidt, G., Sidorenko, V. R., and Bossert, M. (2006).
Collaborative decoding of interleaved Reed-Solomon codes and concatenated code designs.
Preprint, available online at ArXiv, arXiv:cs.IT/0610074.
[Sidorenko et al., 2008] Sidorenko, V. R., Schmidt, G., and Bossert, M. (2008).
Decoding punctured Reed-Solomon codes up to the Singleton Bound.
In Proc. International ITG Conference on Source and Channel Coding, Ulm, Germany.
[Sorger, 1993] Sorger, U. K. (1993).
A new Reed-Solomon code decoding algorithm based on Newton's interpolation.
IEEE Trans. Inform. Theory, IT-39(2):358-365.
[Weber and Abdel-Ghaffar, 2003] Weber, J. H. and Abdel-Ghaffar, K. A. S. (2003).
Reduced GMD decoding.
IEEE Trans. Inform. Theory, IT-49(4):1013-1027.
[Zyablov, 1973] Zyablov, V. V. (1973).
Optimization of concatenated decoding algorithms.
Problems of Information Transmission, 9(1):19-24.
Translated from Russian, original in Problemy Peredachi Informatsii, pp. 26-32.


[^0]:    ${ }^{1}$ IRS codes can be interpreted as punctured RS codes and vice versa [Sidorenko et al., 2008].

